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Abstract Reciprocal Schrödinger equation for scattering matrix ∂S(ω, r)/i∂ω =
τ̂ (ω, r)S(ω, r) determines temporal function, its real part presents the Wigner–Smith dura-
tion of delay and imaginary part describes the duration of resulted (dressed) state formation.
“Deduction” of this equation is executed by the Legendre transformation of classical action
function with subsequent transition to quantum description and, in the covariant form, by
a temporal variant of the Bogoliubov variational method. Temporal functions are expressed
via propagators of fields, they are formally equivalent to adding a photon line of zero energy-
momentum to the Feynman graphs. As an apparent example they can be clearly interpreted
in the oscillator model via polarization and conductivity of medium. It is shown that the adi-
abatic hypothesis in scattering theory represents an implicit account of temporal parameters.
By these functions are described some renormalization procedures, their physical sense is
refined, etc.

Keywords Temporal functions · Scattering · Dressing · Sense of renormalization

1 Introduction

Temporal characteristics of process of scattering should include, in principle, two types of
magnitudes: duration of a delay of colliding particles during their interaction and duration
of formation (dressing) of products of reaction. Their research has an uneasy history: in the
beginning of development of quantum theory McColl had shown that calculation of dura-
tion of tunnel transition conducts to negative value [1, 2]. Therefore during long time was
factually accepted that any estimations of temporal characteristics, besides the uncertainty
principles, are practically not necessary or impossible.

The situation should be principally changing when Frank introduced in the theory of
Ĉerenkov radiation a notion of path length (or duration), necessary for a gradual formation
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of real photon by “a superluminal in media” electron [3]. Without such concept was incom-
prehensible the discrete character of this emission, and Frank had been forced to estimate
the interference picture of continuously emitted (virtual) waves that can lead to the real
emission of single photons at resonance conditions.

However this theory had been remaining without further researches and developments
onto many years. The first, as far as I know, quantum investigation in this direction has been
made and published by Moshinsky [4–6]. He had calculated, through the non-stationary
Schrödinger equation, the time duration needed for establishment of the definite state of
electron after its transition onto upper level with some damped oscillations (“temporary
diffraction”), i.e. the duration of resulted state formation.

The first (semi-qualitative) consideration of time delay in processes of tunneling had been
performed, as far as I know, by Bohm [7]. Then Ter-Mikaelyan [8] and Landau and Pomer-
anchuk [9] had considered the duration of photon formation in the theory of bremsstrahlung:
it is the time duration needed for a virtual coat formation around particle, its dressing (the
reviews [10–12]).

The more constructive and physically more transparent magnitude of time delay under
an elastic scattering was introduced by Wigner [13] through the partial phase shifts, τl(ω) =
dδl/dω, generalized by Smith [14–18] via S-matrix as

τ1(ω) = Re(∂/i∂ω) lnS = (∂/∂ω) argS. (1.1)

Then Goldberger and Watson had deduced on the base of (1.1) a “coarse-grain” Schrödinger
equation by which the generality of this definition had been shown [19]. But at their ap-
proach the magnitude (1.1) had been introduced artificially, by the serial decomposition of
Fourier transformed response function S(t) of linear relation,

O(t) = S(t) ⊗ I (t) =
∫

dt ′S(t ′ − t)I (t ′), (1.2)

or its logarithm near the selected frequency without discussion of its imaginary part, higher
terms and dependence on space variables.

Another approach, which seems at first glance distinctive from the Wigner–Smith one,
was suggested by Baz’ [20] for consideration of nonrelativistic tunneling processes: to
a scattering particle is attributed magnetic moment and its rotation at the scattering process
is analyzed (the method of “Larmor clocks”).

After these initial investigations a number of various definitions of duration of scattering
processes and interaction was offered, different determinations of duration of interactions
are introduced, e.g. the reviews collected in [21].

Our purpose in the series of papers [22–38] was to reveal that functions describing du-
ration of scattering processes and formation of new states are present in already existing
theories: if these concepts reflect essential features of a reality they should be found in the
theories, which adequately describe several experiments.

And really, it has been revealed that the temporal functions can be found out in relativistic
dispersion relations [22–25]; they are naturally manifesting out at summation of indefinite
perturbative series of multiphoton processes as the opportunity of capture of the follow-
ing photon is determined by the duration of virtual keeping of previously captured energy
by scatterer, and therefore they determine thresholds of new processes [26–29]. Tempo-
ral functions are directly connected with propagators of particles and it explains why the
calculations without their direct introduction are possible [30]. Thereby these functions do
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not need to be entered artificially, ad hoc; a more careful investigation of existing theories
instead it is possible.

On the other hand, however, it was necessary to show that the direct use of temporal
functions at analyses, at least, of some processes has practical and not only a gnosiological
sense. On their basis the theory of optical dispersion has been constructed [31, 32], some
features of phase transitions are established [33–37], the opportunity of the “nonlocality in
the small”, i.e. instantaneous tunneling jumps of excitations within the scope of near field,
is shown [38].

The last possibilities are connected with the definite duration of state formation (“dress-
ing”) expressed as

τ2 = Im(∂ lnS/i∂ω) = (∂/∂ω) ln |S|. (1.3)

As far as I know, the similar expression for τ2 was introduced, for the first time, by Pollak
and Miller [39, 40] and was interpreted as the duration of tunneling process. (Note that the
duration of particle formatting can be calculated by dynamical considerations, it presents
the special direction in the high energy physics, cf. the review [41].)

As it is proven in [38], superluminal transfer of excitations (jumps) through a linear
passive substance can be affected by nothing but by the instantaneous tunneling of virtual
particles. The tunneling distance c|τ2| is expressed via the deficiency in the energy relative
to the nearest stable (resonance) state �(�ω) as the relation of uncertainty type:

τ2�ω = π, (1.4)

the nonlocality of the electromagnetic field must be described by the 4-potential Aμ, whereas
the fields E and B remain unconnected to the near field. (The overview of this theorem is
given below; it can explain, in particular, the paradox of tunneling calculations [1, 2].)

Nevertheless the existence of two independent expressions (1.1) and (1.3) even log-
ically seems unsatisfactory: delay at scattering and duration of formation should be in
some way or other interrelated. Formally they can be combined as τ1(ω, r) + iτ2(ω, r) =
(∂/i∂ω) lnS(ω, r), which appears as an equivalent of the equation

∂S(ω, r)/i∂ω = τ(ω, r)S(ω, r), (1.5)

as though it is an analog of the Schrödinger equation for S-matrix, rewritten via the trans-
formation of t ↔ ω type and with a “temporal” operator τ(ω, r) instead Hamiltonian.

Such is indeed the case: this problem and further investigation of temporal functions on
this basis is the purpose of the paper.

The direct derivation of (1.5), which would establish the foothold in the duration prob-
lems, is performed by some equivalent of the Legendre transformation of Schrödinger equa-
tion (Sect. 2). The main properties of unified temporal functions τ(ω, r) and their interre-
lations with the uncertainty magnitudes are considered in Sect. 3. As these functions are
causal, the dispersion relations and corresponding sum rules for them can be established
that demonstrates some principal properties of temporal functions (Sect. 4). The received
results are discussed in Sect. 5 on an example of the simplest oscillator model of medium
that descriptively reveals the physical sense of both temporal functions.

If temporal parameters can be considered as the results of interference of waves coming
from different points, it seems that the suiting functions for their comparative investigation
should be the Wigner functions (Sect. 6). Their consideration shows that the expressions
of temporal functions are close to propagators (Green functions), and it will be proven in
Sect. 7 in the frame of formal theory of scattering.
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In Sect. 8 temporal functions and their covariant forms will be considering by the meth-
ods of quantum field theory and the equations of (1.5)-type will be generalized till com-
pletely covariant analogues of Tomonaga–Schwinger equations. It allows to show that the
offered theory can be considered as the justification of the adiabatic hypothesis of quantum
field theory and its generalization, the revealing of physical sense of such formal, as seems,
mathematical procedure.

Section 9 is devoted to some problems of QED. Their considerations are continued in
Sect. 10 by interpretation of renormalization procedures, the Pauli–Villars and the subtrac-
tion methods, and, more generally, the renormalization group equations via temporal func-
tions.

In the Conclusions the main results are summed up and some perspectives of further
investigations are mentioned.

2 Legendre Transformation

The basic equation of quantum dynamics, i∂S/∂t = HS, can be formally “deduced” from
the Hamilton–Jacobi equation for classical action function,

(∂/∂t)Scl(qi; ∂Scl/∂qi; t) = Hcl(qi; ∂Scl/∂qi; t), (2.1)

by the Schrödinger-type heuristic substitution:

Scl → i� ln{S(t, r)/�} (2.2)

and replacement of classical variables x, p by corresponding operators (c = � = 1 below).
Notice that this substitution mathematically means the transition from the class L1 of inte-
grable functions to the class of L2 functions, to the Hilbert space.

The transition to new variables in the classical action function is achieving by the Legen-
dre transformation:

Scl(q
′;p′; t ′) = Scl(q;p; t) −

∑
(q ′q + p′p + t ′t). (2.3)

The canonical transformation from the time variable t to the energy variable, t → t ′ =
H → E, in the equation (2.1) results in

Scl(t; . . .) − Ht = Scl,L(E; . . .), (2.4)

and the canonical equation (2.1) is transformed into the temporal Hamilton–Jacobi equation:

(∂/∂E)Scl,L(E; . . .) = −Tcl(E; . . .), (2.5)

in which the role of Hamiltonian plays a (classical) function of duration of considered
process. It leads to classical temporal Hamilton equations and so on.

The analog of Schrödinger-type substitution (2.2),

Scl,L(E; . . .) → i lnS(E, r), (2.6)

leads to the quantum equation (more familiar for such notations symbol ω instead E is
used):

∂S(ω, r)/i∂ω = τ(ω, r)S(ω, r), (2.5′)
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from which the determination of temporal function in accordance with the Legendre trans-
formation follows:

τ(ω, r) = ∂ lnS(ω, r)/i∂ω. (2.7)

These expressions conform to (1.5), but their “deduction” allows discussion of equation
features and some its generalizations.

The Legendre transformation can be performed at nonzero values of the Hessian, i.e. the
determinant of second derivatives:

J (t → ω) = (lnS)tt (lnS)rr − ((lnS)tr)
2 �= 0. (2.8)

Its rewritten form,

J (t → ω) = (∂H/∂t)
−→∇ p − (

−→∇ H)2 �= 0, (2.8′)

evidently determines processes for which an introduction of the temporal functions τ(ω, r)
has physical sense. Note that as the Legendre transformation L̂ is performed by the involu-
tion operator, L̂2 = 1, this transformation does not change magnitudes of observables and
commutation relations.

Notice that the variation of function τ(ω, r) immediately leads to the Fermat principle.
Further Legendre transformation r → r′ = k of the function S(E, r) leads to the rela-

tion:

ρ(ω, k) = i∂ lnS(ω,k)/∂k, (2.9)

which must describe an space interaction region in dependence on energy-momentum. Op-
erators (τ, ρ) = (∂/i∂ω, i∂/∂k) form the 4-vector corresponding to the equation:

(τ 2 − ρ2 − s2)S(ω,k) ≡ −(∂2
ω − ∂2

k + s2)S(ω,k) = 0 (2.10)

with a 4-interval s. It can be considered as the reciprocal one to the Klein–Gordon equation,
its general integral representation with the restrain s2 ≥ 0 leads to the relativistic generaliza-
tions of Kramers–Kronig dispersion relations [22–25].

The direct integration of (2.7) leads to the representation

S(ω, r) = S0(ω0, r) exp

[
−i

∫ ω

ωo

τ (ω, r)dω

]
, (2.11)

corresponding integration of (2.9) will be expressed via density of 4-volume of interaction.
It seems beneficial and interesting, for some brightening of physical sense of used sub-

stitutions, to recall, on one example, the possible role of temporal functions in classics and
their correspondence with quantum functions (more precisely it may be a correspondence
between theories described by functions of the L1 and L2 classes of integration).

So, the duration of rotation in the classical mechanics can be determined as

T = 2m

∫ b

a

dx/p(x), p(x) = [2m(E − V (x))]1/2, (2.12)

p is the linear momentum of rotating particle, E and V are the complete and potential
energies. By introducing the phase integral or the action function A = 2

∫ b

a
p(x)dx the du-

ration of process can be determined as T = 4∂A/∂E. The duration, for example, of a packet
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spreading over a system of equidistant levels was determined in the “old” quantum mechan-
ics [42] as

�T ∼ 1/(∂�E/∂A) ≈ 2∂2A/∂E2. (2.13)

In accordance with the Schrödinger heuristical principle the transition from classical
mechanics into quantum one must be carried out by replacement of action function onto its
logarithm: A → i� ln(S/�), and just this substitution leads to the definition (2.2).

3 Some Features of Temporal Functions

The general solution (2.11) of (2.7) can be presented as

S(ω, r) = S1(ω0, r) exp

[
i

∫ ω

τ1(ω, r)dω −
∫ ω

τ2(ω, r)dω

]
, (3.1)

where lower limits of integrals do not depend on ω; the functions τ1 and τ2 represent, corre-
spondingly, (1.1) and (1.3). The unitarity of S(ω,k) allows to conclude, with the consider-
ation of Cauchy- Schwartz inequality for (3.1)

|S(ω,k)|2 ≡ 1 =
∣∣∣∣
∫

S(ω, r)eikrdr

∣∣∣∣
2

≤
∫

|S0(ω0, r)|2dr +
∫

exp

[
−2

∫
τ2(ω, r)dω

]
dr,

(3.2)
that τ2(ω, r) cannot retain the constant sign over all frequencies interval. Its alternating may
show an incompleteness of response function in the given space point. It can be assumed
that the details of processes leading to the terminating of reaction, that are usually named as
the particles (states) dressing, must be described just by the function τ2.

At a simplified estimation (3.2) can be presented as

|S(ω)|  |S(ω0)| exp[−(ω − ω0)τ2], (3.2′)

then the opportunity of Fourier-transformation of S(ω, r), i.e. the existence of the response
function S(t, r), dictates for the considered theory the inequality (ω − ω0)τ2 ≤ 0 near max-
imal value of τ2. It shows that at ω < ω0 the duration of formation τ2 may be negative, i.e.
in the certain frequencies range the advanced emission or even superluminal phenomena are
not excluded . Just such situation has place at a superluminal transfer of excitation and, as it
had been shown in [38], corresponds to a lot of experimental data [43–46].

Addition of the following term to the S(ω, r) decomposition of (3.2′) type,

σ(ω, r) ≡ (∂/i∂ω)2 lnS(ω, r) = −iτ ′(ω, r), (3.3)

at the inverse Fourier transformation with τ2 > 0 leads to the “normal” response function:

S(+)(t, r) = S(ω0)(8πσ)−1/2 exp[−iω0t − (t − τ)2/2σ ]{1 − erf((t − τ)/
√

2σ)}. (3.4)

Thus (3.3) shows the broadening of signals on their path.
With τ2 < 0 such transformation results in the “anomalous” response function S(−)(t, r),

which will be distinguished by the sign of errors function.
Thus, the complete response function is represented as the sum

S(t) = θ(τ2)S
(+)(t) + θ(−τ2)S

(−)(t), (3.5)
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which can be examined as an analogue of decomposition of the causal propagator �c(x) =
θ(t)�(−) +θ(−t)�(+), where �(±) propagators correspond to positive and negative frequen-
cies parts.

Let’s consider some peculiarities of temporal functions connected with the uncertainty
principle by the general method offered by Mandelstam and Tamm [47, 48].

Their consideration begin with the comparison of two quantum expressions for Hermitian
operators A and H, the Hamiltonian, with the standard deviations �A and �H :

�H · �A = 1

2
|〈HA − AH〉|; (3.6)

�(∂/i∂t)〈A〉 = 〈HA − AH〉, (3.7)

which lead together to the equation

�H · �A = 1

2
�|∂t 〈A〉|. (3.8)

For its analysis they introduce the projector P of some definite state ψ0:

P (t) = (ψ0,ψ)ψ0, P 2 = P, 〈P 〉 ≤ 1, (3.9)

its standard deviation is defined as

�P(t) = (〈P 2〉 − 〈P 〉2)1/2 ≡ (〈P 〉 − 〈P 〉2)1/2. (3.10)

The substitution of (3.10) in (3.8) is offering the main relation:

�H · (〈P 〉 − 〈P 〉2)1/2 = 1

2
�|∂t 〈P〉|. (3.11)

This differential equation with the initial value P (0) = 1 leads to the solution:

P (t) = cos2(�Ht/�). (3.12)

Therefore for decay processes with the halftime τ1/2, when P (τ1/2) = 1/2, it gives the
Mandelstam–Tamm form of the energy-duration uncertainty relation:

�H · τ1/2 = π�/4. (3.13)

But for the process of excitation transfer, when at the completion of transferring there
appears a new stable state and therefore P (τ2) = 1, it gives

�H · τ2 = nπ�, n = 1,2, . . . , (3.14)

where both magnitudes �H and τ2 must be simultaneously positive or negative. It com-
pletely conforms with all observations of superluminal transfer of excitations in the anom-
alous dispersion regions, at FTIR and so on and completely corresponds to (1.4) at n = 1.

In order to describe the effects of nonlocality, all phenomena with τ2 < 0 can or even
must be considered as the observation of virtual processes that are mathematically very near
to a description of instantons. Moreover, since the described instant jumps are represented
by virtual exchanges, such states can be considered as the quasiparticles with their own
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peculiarities and sizes, within which signals of definite frequency intervals are instantly
transferable. Hence such formations can be conceived as the instanton-type quasiparticles.

The value of (3.14) exceeds the common Heisenberg limit. The possibility of exceed-
ing can be, in general, substantiated by the most general formal deduction of uncertainty
relations given by Schrödinger [49]. His deduction brings to such expression for standard
deviations:

(�A)2(�B)2 ≥ 1

4
|〈AB − BA〉|2 + 1

4
[〈AB + BA〉 − 2〈A〉〈B〉]2, (3.15)

which differs from the more usual form by the last term and can strengthen the condition
of (3.14) type. The Heisenberg limit of this expression, with |〈AB − BA〉| → � and omitting
of the second term, shows a minimal value of uncertainties, which can be achieved for pure
states, in the weakly correlated conditions. But this limit can be exceeded for some physical
magnitudes (compare [50], such possibilities are mentioned in recent investigations also,
e.g. [51, 52] and references therein).

Notice also the deduction of uncertainty principle with the operator ∂/i∂ω by
Wigner [53–55]. In this article was specially underlined that such uncertainties can be sepa-
rately considered over different axes, this peculiarity can be a starting point at investigation
of phenomena of FTIR.

4 Dispersion Relations and Sum Rules

Response functions in (ω, r)-representations are governed by the temporal equation and
simultaneously they satisfy the Kramers–Kronig dispersion relations as it requires the prin-
ciple of causality:

Sc(ω) = 1

πi

∫ ∞

−∞
dη

Sc(η)

ω − η
(4.1)

(we write them in the simplest form with S(ω = 0) = 0, here and below singular integrals
are taken via the Cauchy principal values). This duality allows obtaining some principal
conclusions.

By differentiation of (4.1) or by its substitution into (1.5) these dispersion relations can
be represented in two forms:

τ(ω)Sc(ω) = − 1

π

∫ ∞

−∞
dη

Sc(η)

(ω − η)2
, (4.2)

τ(ω)Sc(ω) = 1

πi

∫ ∞

−∞
dητ(η)

Sc(η)

ω − η
. (4.2′)

Equating of their right sides leads to the sum rule:

∫ ∞

−∞
dωSc(ω)

1

ω

[
τ(ω) − i

ω

]
= 0. (4.3)

This expression can be satisfied, in particular, with the equalities

τ1(ω) = 0, τ2(ω) = 1/ω, (4.4)
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which show that even at the absence of delay for formation of the out state (wave or particle,
etc.) the certain time duration, twice bigger the common uncertainties value, is needed.

Notice that at the Fourier transformation of the temporal equation (1.5) such expression
follows:

tS(t) =
∫ ∞

0
dt ′S(t ′)τ (t − t ′), t ≥ 0, (4.5)

and if lim tS(t) = 0 at t → 0, the sum rule of (4.3) type
∫

dtS(t)τ (−t) = 0 (4.5′)

can be deduced. Further derivatives of the equation (1.5) lead to more complicate sum rules,
by checking of which the singularities of S(t) at t → 0 can be determined.

The temporal functions τ(t) must be causal, i.e. τ(t) must be zero at t < 0 and therefore
it obeys the equation of constraints [22–25]:

τ(t) − τ(0) = θ(t)[τ(t) − τ(0)], (4.6)

θ(t) is the Heaviside step function and its uncertainty at t = 0 requires corresponding sub-
tractions that can contain, in principle, higher derivatives of τ(0) also. But in absence of
tunneling and instant transitions [38] these subtractions can be omitted and for temporal
functions the new dispersion relations can be written:

τ(ω) = 1

πi

∫ ∞

−∞
dη

τ(η)

ω − η
, (4.6′)

which evidently interconnect τ1(ω) and τ2(ω). They are compatible, in particular, with the
conditions (4.4) and with representations of these functions via propagators in Sect. 6.

The analyticity of causal S(ω) allows its representing as the Bläschke product:

S(ω) = const · ω−p
∏
n

ω − ωn + iγn/2

ω − ωn − iγn/2
. (4.7)

With taking into account the relations (4.6′) the sum rule (4.3) can be rewritten via an
interaction operator T (ω) = S(ω) − 1 as:

∫ ∞

−∞
dωT (ω)

1

ω

[
τ(ω) − i

ω

]
= 0. (4.3′)

Since ωpS(ω) is the meromorph function, the substituting of T (ω) into this equality and
closing the integration contour in the upper half-plane produces the representation:

τ(ω) =
∑

n

[ω − ωn + iγn/2]−1 ± ip/ω, p > 0. (4.8)

Temporal functions have physical sense for positive frequencies, for negative frequen-
cies they are determined by the analytical continuation: τ(−ω) = τ ∗(ω), which follows the
analyticity of S(ω).

It allows the determination of Fourier transforms:

τ(t) = 1

2πi

∫ ∞

−∞
dωeiωt ∂

∂ω
lnS(ω) = res

∑
n

exp(iωnt), (4.9)
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the last equality follows the meromorphity of (4.7) at integer p. It leads to representations:

τ1(t) = −
∑

n

cos(ωnt) exp(−γn|t |); τ2(t) = −isgn(t)τ1(t), (4.10)

i.e. temporal functions are represented by a set of damped oscillators with self-frequencies
modulated by the widths of transmission bands, index n numerates self-values.

The oscillator character (“time diffraction”) of the expressions (4.10) and modulation of
oscillations by self-band widths must be underlined (cf. [4–6]). Note that at the standard ap-
proach the duration of processes is usually taken as 1/γ , without account of their oscillating
character.

The analyticity of S(ω + iς) in the upper half-plane allows to write such integral over
the closed contour: ∮

τ(ω)dω =
∮

τ1(ω)dω = 2π(N − P ), (4.11)

where N and P are zeros and poles of temporal function into the contour. Poles of τ1(ω)

signify impossibility of signal transferring on these frequencies through the system (fre-
quencies locking) or particles capture at scattering processes. Zeros show that correspond-
ing signals are passed through system without delays, etc. Really (4.11) represents a variant
of the Levinson theorem of quantum scattering theory, e.g. [19].

The maximum-modulus principle for S(ω) shows that as τ2(ω) is determined via its
derivative, it can not be equal to zero at any frequency: the formation of outgoing signal
(wave, particle, state) always requires some temporal duration.

It represents the main physical result of this section.

5 Illustrative Example: Harmonic Oscillator

Let’s illustrate some of obtained results by consideration of the simplest model, the oscillator
with damping of (4.8)-type:

x ′′ − γ x ′ + ω2
0x = f (t). (5.1)

The complete causal solution of (5.1) can be written via the Green functions:

x(t) =
∫ t

−∞
dt ′G(t − t ′)f (t ′); G(t) = G0(t) + G1(t), (5.2)

and (5.2) can be considered as a model description of (3.1). The response part of the com-
plete Green function is the solution of non-homogeneous equation, the Fourier image of
which is

G1(ω) = −1/2π [(ω + iγ /2)2 − ω2
1] (5.3)

with ω2
1 = ω2

0 − γ 2/4.
The corresponding causal temporal functions are:

τ1(ω) = γ /2[(ω − ω1)
2 + γ 2/4] + {ω1 → −ω1}, (5.4)

τ2(ω) = (ω − ω1)/2[(ω − ω1)
2 + γ 2/4] + {ω1 → −ω1}. (5.5)

The last expression shows the possibility of advanced or superluminal propagation at ω <

ω1 − γ 2/8ω1 (cf. [38] and superluminal transfer in macroscopic oscillator systems [56]).
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Apart from some exotic cases γ � ω0 and at |ω − ω0| > γ and then with γ → 0 it can
be taken that

τ1(ω)  γ /2[(ω − ω0)
2 + γ 2/4] → πδ(ω − ω0), (5.4′)

τ2(ω)  (ω − ω0)/2[(ω − ω0)
2 + γ 2/4] → 1/(ω − ω0), (5.5′)

this shows the proximity of last expression to the uncertainty values.
It seems that the most evident and close to the intuitive physical representation of tem-

poral functions may give their description in the Lorentz model of dispersive and absorbing
media (e.g. [57]), where all media are represented as the set of oscillators with damping.
Each oscillator is described by the Green function (5.3) with corresponding factor depend-
ing on density of scatterers and so on.

The real parts of dielectric susceptibility and conductance are expressed in this model,
respectively, as

ε1(ω) − 1 ≈ ω2
p(ω − ω0)/2[(ω − ω0)

2 + γ 2/4]; (5.6)

σelectr(ω) ≈ ω2
p/8πγ [(ω − ω0)

2 + γ 2/4], (5.7)

ωp is the plasma frequency.
The comparison of (5.6-7) and (5.4-5), excluding the immediate vicinity of resonance,

shows the possibilities of approximations:

ε1(ω) − 1 ≈ (ω2
p/2ω)τ2(ω), (5.6′)

σelectr(ω) ≈ (ω2
p/4πγ 2)τ1(ω). (5.7′)

These relations give the evident interpretation of both temporal functions. So, the polar-
ization of media is reasonably determined by duration of wave formation. And, it is also
intuitively evident, the electrical conductivity, as (every) transfer process, is determined via
the durations of EM waves delay, which can be induced by virtual momentum transferring
to charged particles, i.e. by their movements in the direction of EM flux.

The more general connection of temporal functions with characteristics of media can be
established in such fashion. The principle of entropy grows requires execution of the strong
inequality for almost transparent passive dispersive media: ∂(ωε)/∂ω ≥ 0 [58]. With the
substitution S → ε(ω)− ε(∞) = ε1 + iε2, i.e. by the equation ∂ε/∂ω = iτε, the real part of
this general inequality can be rewritten as

τ2 ≤ 1/ω − τ1ε2/ε1. (5.8)

At sufficiently low frequencies ε2 = (4π/ω)σelectr, and this inequality is reducing to the
simplest form:

τ1 + τ2 ≤ 1/ω, (5.9)

which evidently shows that τ2 can be negative in some frequencies region. In particular it
must be negative in the region of anomalous dispersion, where must be expected a discor-
dance between maxima of ε1 and ε2 [38], but for their description more realistic models are
needed.
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6 Temporal Wigner Functions

The Wigner functions describe the overlapping of space domains of states [59] as

w(k; r; t) =
(

1

2π

)3 ∫
dqeiqkψ(r − q/2; t)ψ∗(r + q/2; t), (6.1)

and are covariantly generalized as

w(k;x) =
(

1

2π

)4 ∫
dve−ivkψ(x − v/2)ψ∗(x + v/2), (6.2)

with 4-vectors k, x, v that describe the time-space overlapping (interference) of the quantum
self-states [60]. Their quantum field interpretation via the creation and destruction operators
descriptively shows that the interference of oppositely shifted wave functions in (6.2) must
sum the maps of their possible variation onto 4-intervals.

Let us consider the one-particle temporal Wigner functions as the special case of (6.2),

w(+)(ω, t; r) = 1

2π

∫ ∞

0
dτeiωτψ(t − τ/2; r)ψ∗(t + τ/2; r); (6.3)

w(−)(ω, t; r) = w(+)(−ω, t; r). (6.3′)

These functions evidently describe the temporary overlap of wave functions at one space
point and therefore just these functions should characterize the time delay at collision
process and the duration of states formation (space arguments will be hereafter omitted).
Notice the proximity of such description to the Frank conjecture in the theory of Ĉerenkov
radiation [3].

By time shifts of wave functions with the Hamiltonian H,

ψ(t − τ/2) = ψ(t) exp(iHτ/2);
(6.4)

ψ∗(t + τ/2) = exp(iHτ/2)ψ∗(t),

the temporal Wigner function (6.3) is rewritten as

w(+)(ω, t) = ψ(t)δ+(ω − H)ψ∗(t) → ψ(t)W(+)(ω, t)ψ∗(t). (6.5)

These functions are the self-functions of the operator equation

∂

i∂ω
w(+)(ω, t) = i(ω − E)−1w(+)(ω, t) (6.6)

of (1.5) type, E is the (complex) energy of system, Hψ = Eψ . This equation can be consid-
ered as the reciprocal one to the Liouville equation in Schrödinger representation. It shows
that the durations of scattering processes and of states formation should be described as the
self-values of corresponding Green operators.

It must be noted that in distinction from the space Wigner functions the temporal func-
tions are non-symmetric relative to their variables and therefore their self-values can be
complex ones. It just corresponds to possibilities of retarded and advanced interactions.
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Slightly another derivation of such equation can be examined on transition to the Heisen-
berg representation,

ψ(t − τ/2) = exp(iωτ̂ )ψ(t/2) exp(−iωτ̂ ),
(6.4′)

ψ+(t + τ/2) = exp(iωτ̂ )ψ+(t/2) exp(−iωτ̂ ),

with a temporal operator τ̂ . Equation (6.6) can be rewritten as

−i∂ωw(+)(ω, t) = exp(iωτ̂ )[τ̂ ,Q] exp(−iωτ̂ ), (6.6′)

with function

Q(ω) = 1

2π

∫ ∞

0
dteiωτψ(−τ/2)ψ+(τ/2).

This representation naturally leads to the Hamilton equations for temporal operators.
The function (6.3), just as all Wigner functions, can be rewritten via the conjugate vari-

able, via the energy,

−i∂ωw(+)(ω, t; r) = 1

2π

∫ ∞

0
dηeiηtψ(ω − η/2; r)ψ+(ω + η/2; r). (6.7)

Therefore the state formation and so on can be considered as a gradual process of energy
alteration till their definite values for physical (“dressed”) particles. This property can be
evidently generalized on interactions of arbitrary number of particles. In a similar way may
be considered the gradual evolution of (establishment in) other particles characteristics in
scattering processes.

It can be noted, in particular, that if it is possible to introduce the operator of complete
momentum K, the Wigner functions in the close analogy with all above can be symbolically
written as

w(k; r) = ψ(r)δ(k − K)ψ+(r); (6.8)

i.e. via the vector Green functions. (This possibility will not be considered here further.)

7 Formal Theory of Scattering

Inasmuch temporal functions can be represented via propagators, let’s consider on this base
the process of elastic scattering:

A + B → A + B. (7.1)

The kinetics of interaction must be described by the operator S = 1 − iT, where T is
the operator of interaction, expressed via propagators G(E) = (E − H)−1 and g(E) =
(E − H0)

−1, the complete Hamiltonian H = H0 + V, self-values of the Hamiltonians are
complex, Hψ = (E + iΓ )ψ and H0ψ0 = (E0 + iΓ0)ψ0, where Γ0 and Γ are the natural and
complete widths of the upper level (we shall restrict our consideration to two-level system).

As it was shown in [30] the duration of scattering and duration of new state formation are
naturally expressed via propagators with account and without account of this interaction:

�τ̂ ≡ τ̂ − τ̂0 = i[G(E) − g(E)], (7.2)
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where τ̂ and τ̂0 denote temporal characteristics of particle’s complete way with and without
interaction.

The differentiation of operator of interaction, T = V/(1 − gV), with taking into account
the determination G = g + gVG and the definition (7.2), leads to an equation

∂T/i∂E = �τ̂T. (7.3)

Under the transition to energy surface, E = E(p), the matrix element of (7.2),

〈p|�τ̂ |p〉 = ± i
∑

{[E − En − iΓn/2]−1 − [E − E(0)
n − iΓ (0)

n /2]−1}, (7.4)

clearly shows its properties. So, iG(E) can be interpreted as the time duration needed for
particles flight with their elastic scattering and ig(E) corresponds to the free transfer only.

Transfer in (7.2) into the coordinate representation,

G(r) − g(r) = − 1

(2π)3

∫
dp〈p|�τ̂ |p〉eipr, (7.5)

demonstrates the similarity of our definition with the Smith derivation of time delay at scat-
tering processes [7].

Notice that such expression for the temporal operator also follows (7.2):

�τ̂ = igVG. (7.6)

This allows, in particular, the expansion of temporal functions into the series of free
Green functions and interaction vertices:

�τ̂ = igVg + igVgVg + · · · , (7.7)

natural for quantum theories and useful for interpretations of these processes via Feynman
graphs, etc. These forms show that the measurement of time characteristics of process is
equivalent to addition of graphs of process by specific vertices (we shall return to this inter-
pretation below).

The third form of temporal operator, which follows (7.2), can be expressed as

�τ̂ = igTg. (7.6)

Its matrix element,

i〈p|T|p〉/[(E − E0(p))2 + Γ 2
0 (p)/4], (7.7)

with the substitution of the known expression of scattering amplitude on the angle zero,
f (p,p) = 4π2m〈p|T(p)|p〉, and the transforming to energy surface E = E(p) leads to the
expression:

〈p|�τ̂ |p〉 = 1

2π2imΓ 2
f (p,p). (7.8)

The real part of (7.8) can be expressed, with taking into account the optical theorem of
scattering theory, via the total cross-section of scattering:

τ1(p) = p

(2π)3mΓ 2
σtot(p). (7.9)
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Notice that this result clarifies the great delay with the beginning of examination of tem-
poral characteristics of scattering processes: the most part of this information is contained
in the Green functions and cross-sections.

If we determine the (maximal) volume of interaction as V = σmaxuτmax, where u is the
velocity of particle, τmax = 2/Γ and σmax is the resonance cross-section, the mean value of
duration of interaction can be determined as the balance relation,

τ̄1(p)/σtot(p) = τmax/σmax. (7.10)

For the practically most important optical region Γ ∼ 108 s−1, σmax = 4π/k2, σtot =
(4π/k)r0, r0 = e2/mc2. Therefore for k = 6.3 × (104–103) cm−1 the relation (7.10) leads
for nonresonant frequencies to

τ̄1(p) ∼ (k/Γ )r0 = 1.6 × (10−16–10−15) s, (7.11)

this evidently does not contradict the usual representations of light propagation speed.
This magnitude allows an estimation of the mean value of index of refraction in non-

resonant region. As it had been shown in [31, 32] the optical dispersion in a transparent,
at least, region can be considered as the kinetic process of photons transfer through media.
Such transfer must be described by the free path lengths � = 1/Nσtot with the vacuum ve-
locity c, N is the density of outer (optical) electrons, and by the subsequent delays at each
scatterer for the mean time (7.11). Thus the complete time, needed for photons transfer on a
distance L, is equal to

T = (L/c) + (L/�)τ1. (7.12)

This estimation leads to the group velocity u = L/T and, for nonresonant cases, to the group
refractive index

ngr ≡ c

u
= cT

L
= 1 + cNσtotτ1 ∼ 1 + N

4πc

Γ
r2

0 ∼ 1 + 3 × 10−22N, (7.13)

which qualitatively corresponds to observations (N is of order of the Löschmidt number).
It must be underlined that the representation of temporal functions via propagators sup-

ports the results of Sect. 6: their analytical properties and the existence of dispersion rela-
tions of Kramers–Kronig type.

8 Duration of Interaction and Adiabatic Hypothesis

Let’s try to reveal that the magnitudes of duration of interaction are implicitly contained
in the standard theory in the form of adiabatic hypothesis. This hypothesis asserts that for
the correct quantum calculations of transition amplitude such artificial substitution for the
Hamiltonian is needed:

V (t) → V (t) exp(−λ|t |) (8.1)

with switches to the limit λ → 0 after all calculations (e.g. [19]).
Stueckelberg proposed more general approach to these problems via the causality condi-

tion [60]. Bogoliubov generalized his method by introduction of operations of “the switching
interaction on and off” performed by some function q(x) ∈ [0,1], which characterizes the
intensity of interaction: in the space-time regions with q(x) = 0 interaction is completely
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absent and with q(x) = 1 is completely turn on [61]. But the introduction of this switching
function has not a clear physical substantiation and can be justified a posteriori only.

Hence S-matrix becomes a functional of function q(x) and the final state of system is
expressed in the interaction representation as

Φ[q] = S[q]Φ0, (8.2)

Φ0 is the initial state; the switching function is introduced into the (classical) action function,
e.g.

Scl =
∫

dxq(x)£(x), (8.3)

where £(x) is the Lagrange density of interaction. In the quantum field theory, correspond-
ingly, the operator of evolution will be represented as the functional:

S[q] = T ′ exp

{
i

∫
dxq(x)£(x, q)

}
, (8.4)

T ′ is the chronologization operator and it is assumed that the relative value of Lagrangian
depends on “intensity of interaction”. This expression is the functional analog of the
Schrödinger substitution used in Sect. 2.

The variation of (8.2) over q(x) leads to the variational equation

iδΦ[q]/δq(x) = H(x;q)Φ[q] (8.5)

with the Hamiltonian of interaction

H(x;q) = i(δS[q]/δq(x))S∗[q], (8.6)

which is the variational analog, at q = 1, of the Schrödinger equation for S-operator in the
interaction representation. This form leads to the covariant Tomonaga–Schwinger equation.

The switching function q(x) describes the 4-volume of interaction, and if we shall as-
sume that the extent of this region depends on details of interaction, we can rewrite (8.4)
as

S[£] = T ′ exp

{
−i

∫
dxq(x,£)£(x)

}
= T ′ exp

{
−i

∫
dkq(−k,£)£(k)

}
, (8.7)

in the last equality the existence of corresponding Fourier transforms is proposed. The tran-
sition from (8.4) to (8.7) can be considered as the Legendre-type transformation q ↔ £
of the classical action function (8.3), i.e. instead a switching of intensity of interaction, a
variable part of the 4-volume of interaction (in particular, of the duration of interaction) is
considered. This assumption is near to the procedure executed in Sect. 2 and can be partly
substantiated below by argumentations of renormalization group method in Sect. 10.

The variation of (8.7) over £(k) leads to the equation

δS[£]/iδ£(k) = q(−k,£)S[£], (8.8)

or

q(−k,£) = (δS[£]/iδ£(k))S−1[£], (8.8′)
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i.e. to the evident variation-type analog of the temporal operator. Notice that in the complete
accordance with the Bogoliubov method the singularity of £ on a hypersurface σ(ω) can be
considered, which would lead to the equation

δS/iδ£(k, σ ) = q(−k,σ )S(σ ), (8.9)

reciprocal to the Tomonaga–Schwinger equation.
These equations can be naturally brought to the equation of (1.5) type, reciprocal to the

Schrödinger equation for S-matrix, with the formal temporal function

τ(ω) =
∫

dkq(−k,£)(δ£(k)/δω). (8.10)

The switching function q(x) can be presented, in accordance with the adiabatic hypoth-
esis (8.1), as

q(x) = exp(−γ |t |/2) or q(−k) = δ(k)/2πi(k0 ± iγ /2) (8.11)

which can be rewritten in the covariant form with any unit time-like vector nμ and replace-
ment t → nμxμ. The substitution of (8.11) into (8.10) with assuming of δ-type properties of
δ£(k)/δω and frequency’s shift ω0 → ω − ω0 leads to the usual form of temporal function
for the simplest two-level system,

τ ≡ τ1 + iτ2 = 1/π(γ /2 ± i(ω − ω0)). (8.12)

Thus it can be concluded that the adiabatic hypothesis presents a non-obvious introduc-
tion of the time duration concept in theory.

9 Quantum Electrodynamics

Let’s begin the consideration of temporal functions of QED with examination of the photon
causal propagator of lowest order in vacuum (Feynman calibration, η → 0+):

Dc(ω,k) = 4π/(ω2 − k2 + iη). (9.1)

In accordance with all above it conducts to such expressions for time delay and duration
of formation:

τ1 = −2πωδ(ω2 − k2), (9.2)

τ2 = 2ω/(ω2 − k2) ∼ 1/(ω − |k|). (9.3)

The function τ1 simply shows that the photon can be absorbed or emitted only com-
pletely. The function τ2 qualitatively corresponds to the uncertainty principle, but is twice
bigger, i.e. is measurable; it shows the possibility of retarded, at ω > |k|, or advanced, at
ω < |k|, emission of photon.

It should be noted that the consideration of complete propagators through replacements
k2 → k2 + P (k) in (9.1) with the polarization operator P (k) of QED or even the transition
to propagators of massive (scalar, for simplicity) particles does not change these general
results.
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The estimations of temporal values for elementary processes in the lowest orders can
be achieved by such simple procedure: in accordance with (3.3) it can be suggested the
expression for τ2 via cross-section of scattering:

τ2 ∼ −1

2
(∂/∂ω) lnσ. (9.4)

So, for the Rutherford scattering σ ∼ E−2and it gives τ2 ∼ 1/E; for the nonrelativistic
limit of Compton scattering σ ∼ (1 − 2ω/m) and therefore τ2 = 1/m(1 − 2ω/m), etc. The
values of τ1 can be estimated now via dispersion relations (4.6) and so on.

The complete covariant generalization of temporal operator can be achieved by the
Legendre transformation of equations for 4-momentum of interaction:

i∂S/∂xμ = kμS ←→ ∂S/i∂kμ = xμS, (9.5)

where xμ = (t, r) represents the 4-vector of “duration-space extent of interaction” in (2.10).
The temporal operator is now generalized as the covariant operator ∂/i∂pμ, canonically

conjugated to the energy-momentum operator i∂/∂xμ. The determination of corresponding
functions can be established by the Ward–Takahashi identity:

∂G/i∂pμ = G(p)Γμ(p,p;0)G(p), (9.6)

G(p) is the particle Green function, Γμ(p,q;p − q) is the vertex part. Thus the expression
for self-values of 4-operator follows:

ξμ(p) ≡ ∂ lnG/i∂pμ = 1

2
{G(p)Γμ(p,p;0) + Γμ(p,p;0)G(p)}. (9.6′)

Notice that similar operators were introduced for localized states of spin zero massive
particles [62], but they are a matter of discussions for photons [63].

The representation of vertex operator Γμ(p,p;0) = γμ − (∂/∂pμ)Σ with the mass oper-
ator Σ shows that (9.6) is connected with a gradual formation of physical particles.

The difference between both parts of ξμ can be visually demonstrated by considera-
tion of the simplest case, the complete causal propagator Dc = D + D1 in the scope of
scalar electrodynamics. In accordance with (9.6′) both parts of temporal function in the
p-representation are equal to

ξμ1(p) ≡ Re ξμ(p) = pμD1(p;m) = pμ(D(+) − D(−)), (9.7)

ξμ2(p) ≡ Im ξμ(p) = pμD(p;m) = pμ(Dret − Dadv). (9.7′)

In the x-representation these relations are even more descriptive:

ξμ1(x) = (∂/∂xμ)(D(+)(x) − D(−)(x)); (9.8)

ξμ2(x) = (∂/∂xμ)(Dret(x) − Dadv(x)), (9.8′)

i.e. the duration of interaction describes a gradual decreasing of negative-frequency part and
increasing of positive-frequency part, the extended duration of state formation is determined
by difference of retarded and advanced parts alteration.

These results evidently show also the difference between uncertainty magnitudes and
durations or space extents of interactions. So, the expression (9.7′) and D(p) = −P 1

k2 show
that τ2 and ρ2 are approximately twice bigger corresponding uncertainty values.
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Notice that on the base of these representations several particular models can be con-
structed. Let’s consider as example the space extent of particle formation averaged over
frequencies non exceeding the rest mass:

〈�(r,m)〉 = 1

m

∫ m

0
dμ�(r,μ) = sin(mr)/4πmr2,

its gradient describes, via (9.8′), the space extent of interaction and it approaches, in accor-
dance with the uncertainty principle, to δ(r) with increasing particle mass.

The temporal functions for electron must be determined via the electron Green functions
and in the nearest order they are represented through (9.6′) as

〈τ(p)〉 = 1

2
Tr{γ0S(·)(p)} = p0�(.)(p), (9.9)

which at the substitutions for ω → (p2
0 − p2)1/2 and the Fourier transformation over mo-

ments variables coincides with (9.2), (9.3).
The physical sense of these functions can be established in such a way. The expres-

sion (9.8) shows that the temporal measurement is equivalent to adding zero-frequency
scalar photon line into appropriate electron lines of the Feynman graphs. Therefore the du-
rations can be interpreted via probed additional Coulomb fields of zero intensity (compare
with the Baz’ method of zero-intensity probe magnetic field and the “Larmor clock” in
it [20, 21]).

This examination demonstrates, in particular, that the superluminal phenomena may be
observable, in principle, in all scattering processes, not only in the QED.

In the spinor QED this 4-vector must be determined, correspondingly, as

ξμ = Tr

(
M+ ∂

i∂kμ

M

) /
Tr(M+M). (9.10)

It seems interesting to check by this expression the results, obtained in [9–12] for
bremsstrahlung. By insertion of the known matrix element (e.g. [64]) into (9.10) it can be
easy shown that Re ξμ = 0 in the lowest order. It corresponds to the absence of any delay
at bremsstrahlung, but the components of Im ξμ, connected to the formation processes, are
nonzero. So, if ε, k and ε ′, k′ are initial and final electron energies and momenta, ω is the
photon energy, ϑ is the angle of electron departure, the duration and corresponding path
extent of electron dressing are determined as

τ2 = 1

ω
, ρ2 = k′

εω
+ 1

2

k′ − k

εε ′ + m2
(9.11)

at ε, ε′ ≥ m and

τ2 ≈ |ρ2| ∼ 2ε(ε ′ + ω)

m2ω
, ρ⊥ ∼ 2εϑ

m2
, (9.12)

when ε, ε′ � m.
These results correspond to the previous calculations, but are obtained by a shorter and

more general way. Notice that the region of photons formation can be considered as the near
field of classical electrodynamics.

Let’s briefly consider, as an example, some more general problems. So, if we investigate
the scattering of scalar particles via one-particle exchange, the values of ξμ of the lowest



Int J Theor Phys (2008) 47: 468–491 487

order are determined as logarithmic derivatives of intermediate particle propagator. In the
standard description with taking into account the Ward–Takahashi identity it leads to the
expression:

ξμ(k) = (∂/i∂kμ) lnD′
c = [2kμ/i(t − m2)2]Γ (t, t,0)D′

c, (9.13)

where D′
c is the complete Green function.

The factor 2kμ/(t −m2) is formally close to the uncertainty principle and corresponds to
the duration of outgoing particles formation τ2 = |ρ2| ∼ 1/2E. Time delay is connected with
the imaginary part of propagator and arises at t ≥ 4m2, with possibilities of new particles
birth.

As well as under photons formation the length of their formation (the near field region)
appears, it can be proposed that in processes involving particles with additional internal
parameters, another regions of their formation with their own peculiarities could be also
manifested. Such possibilities will be briefly considering below.

10 To Interpretation of Some Renormalization Procedures

Let’s begin with the Pauli–Villars method of regularization.
This method consists in the substitutions:

�(p,m) → �(p,m) − �(p,M) ∼ (m2 − M2)

(p2 − m2 + iη)(p2 − M2 + iη)
(10.1)

with further passage to the limit M → ∞.
What is its physical sense? Such substitution implies a decreasing of duration of new

state formation with p2 < M2:

ξμ2 ∼ 2pμ{(p2 − m2)−1 + (p2 − M2)−1}, (10.2)

i.e. it is representing as a procedure of alteration of the interaction 4-volume, which was
discussed in connection with the adiabatic hypothesis.

In the x-representation such substitution, ξμ(x) → (∂/∂xμ){�c(x,m)+�c(x,M)}, leads
to an increasing of the role of more energetic and more deep-seated virtual excitations at the
beginning of calculations. Hence it actually means a partial account of higher terms of S-
matrix in the process of particle formation.

Let’s pass on to the subtraction procedures of renormalization.
The regularized mass function of the electron propagator is determined as

Σ reg(p) = Σ(p) − Σ(p)|γp=m − (γp − m)(∂pΣ(p))|γp=m. (10.3)

Then the equalities

Σ reg(p)|γp=m = 0, ∂pΣ reg(p)|γp=m = 0, (10.4)

postulated at its renormalization, can be interpreted as two conditions: the mass of particle
has definite magnitude and the process of its accumulation to the moment of regularization,
at the infinity, is finished.

The regularized self-energetic part of the photon propagator (k∂k ≡ kν∂/∂kν )

Π reg
μν (k) = Πμν(k) −

{
1 − k∂k − 1

2
(k∂k)

2

}
Πμν(k)|k=0. (10.5)
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Apart from the evident and gauge equalities,

Π reg
μν (0) = 0; k−2Π reg

μν (k)|k=0 = 0, (10.6)

the conditions, that are usually simply postulated:

k∂kΠ
reg
μν (k)|k=0 = 0, (k∂k)

2Π reg
μν (k)|k=0 = 0, (10.7)

must be physically interpreted as the conditions of the completeness of physical photon
formation and impossibility of its self-acceleration.

Thus it is stated that the subtraction regularization corresponds to mathematical formula-
tion of the common physical conditions primordially imposed on the system, and therefore
these procedures are far from an artificial, ad hoc method.

It must be especially underlined that the method of renormalization group [62, 65, 66]
can be reduced directly to the temporal functions. Really, as the corresponding Lie equa-
tions contain logarithmic derivatives of propagators over energy-momentum, they are still
proportional to temporal magnitudes.

As the denominators of propagators leads only to the trivial terms, connected with the
uncertainty principles or twice bigger them, let’s consider for checking such proposition
the nondimensional Green functions Ğ(q) with all 4-momenta, except one, fixed. Then in
accordance with the renorm-group equation of Callan and Symanzik [67–69] can be written
that

|ξμ| ∼ q2 ∂

∂q2
ln Ğ(q) = (γm − 1)

∂

∂m2
ln Ğ + β

∂

∂e
ln Ğ − γG(m2, e), (10.8)

where γm, β and γG are the structure functions of the renorm-group.
In the lowest order of ϕ4 theory γm = 0, β = 3

2e2 and γG = − 3
2e. Therefore in (10.9)

for the 4-tail graphs are retained only the terms connected with a charge formation and the
accumulation of observed mass:

e
∂

∂e
ln Ğ = e(1 − Ğ−1);

(10.9)

− ∂

∂m2
ln Ğ = − e2

m2Ğ

∑ 1

yk

Arthyk,

where yk = (z2
k − zk)

1/2, (z1, z2, z3) = (s, u, t)/m2.
It shows that in the ϕ4 theory (and correspondingly in the QED) the charge increasing

must extend the duration of formation, but in such gauge theories, where β < 0, this process
should decrease ξμ.

Note that in the UV limit γm = 1 in (10.9) and

ln Ğ(q2, e) → ln Ğ(1, e) − 2γG lnq. (10.10)

Hence in the asymptotically free theories, where e → −e, the expression (10.9) can be
reduced to such relation:

ξμ2(k) = 2qμ

q2

(
1 − 6

|e|
ν

)
, (10.11)

i.e. at |e| = 1/6ν the duration of formation in this approximation is equal to zero.
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This result can be of general interest in connection with number of lepton families and so
on, but it requires more detailed further investigations. Note, in particular, that the absence
of terms, which describe the delays in the expression (10.9), can be connected with the
exclusively usage of one-loop approximation at calculation of matrix elements.

11 Conclusions

The main results of performed researches can be formulated in such points.

1. The Wigner–Smith function of time delay in scattering process and the function of dura-
tion of state formation are combined into the temporal (analytic) function. This function
can be represented via differential equation in p-space for S-matrix or other response
function, which is reciprocal to the Schrödinger equation. At given temporal function
this equation can be used for calculation or modeling of S-matrix elements and so on.

2. The magnitudes of duration of scattering process (time of delay and duration of state
formation) are implicitly contained in the usual field theory. They actually correspond
to the propagators of interacting fields and thereby many problems of kinetics could be
considered without explicit introducing of temporal magnitudes. Just it can explain a
more recent beginning of researches of temporal parameters in the quantum theory.

3. The adiabatic hypothesis of quantum theory represents an implicit expression of exis-
tence of the certain duration of formation (dressing) of physical particles. Therefore it
does not represent a formal, pure mathematical procedure, but shows that at the investi-
gation of arising of physical state the proper consideration of its formation duration can
be essential.

4. Both methods of duration measurement, by Wigner and Smith and by “Larmor clock”,
can be described as an addition of zero-energy scalar line to the Feynman graph of
process.

5. The dispersion relations for temporal functions are established. They prove, in particular,
that the duration of state formation is, at least, twice bigger the uncertainty values and
therefore is measurable. Such magnitudes can be directly measured in the multiphoton
processes, etc.

6. The consideration of the Lorentz (oscillator) model of simple dispersive medium leads to
an intuitively evident interpretation of temporal functions. In this model the function of
time delay is proportional to polarization of medium and the function of state formation
is proportional to electric conductivity.

7. The transition from the Schrödinger equation into the reciprocal temporal equation cor-
responds to the Legendre transformation of classical action function. The covariant form
of temporal equation is deduced by a temporal variant of the Stueckelberg–Bogoliubov
variational method.

8. The methods of subtraction regularization in field theory can be logically justified and
explained as the primordial imposing of such physical requirements on propagators of
particles as asymptotic finishing of their formation and impossibility of particles self-
acceleration.

9. The concept of interactions duration imparts the evident physical sense to the equations of
renormalization group and demonstrates that the formation of each particles parameters
required the certain (may be, specific) duration.

Hence it gives a possibility to think that the coordination of durations of these partial
processes would reveal some peculiarities of those or other particles. Such program requires,
however, further researches.
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We do not discuss here a lot of delay determinations known in the current literature. It
can be suggested that the revealed analytical properties of the composed temporal functions
demonstrate their general significance. It does not exclude, of course, the possible usefulness
of some other determinations in special cases.
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